Quantum fast Fourier transform using multilevel atoms

نویسنده

  • ASHOK MUTHUKRISHNAN
چکیده

We propose an implementation of the quantum fast Fourier transform algorithm in an entangled system of multilevel atoms. The Fourier transform occurs naturally in the unitary time evolution of energy eigenstates and is used to de®ne an alternative wave-packet basis for quantum information in the atom. A change of basis from energy levels to wave packets amounts to a discrete quantum Fourier transform within each atom. The algorithm then reduces to a series of conditional phase transforms between two entangled atoms in mixed energy and wave-packet bases. We show how to implement such transforms using wave-packet control of the internal states of the ions in the linear ion-trap scheme for quantum computing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permutation Equivalence Classes of Kronecker Products of Unitary Fourier Matrices

Kronecker products of unitary Fourier matrices play important role in solving multilevel circulant systems by a multidimensional Fast Fourier Transform. They are also special cases of complex Hadamard (Zeilinger) matrices arising in many problems of mathematics and thoretical physics. The main result of the paper is splitting the set of all kronecker products of unitary Fourier matrices into pe...

متن کامل

Using Fast Fourier Transform in the 3-d Multilevel Fast Multipole Algorithm

In this paper a method is presented how to perform interpolation and anterpolation in both spherical coordinates θ and φ by trigonometric polynomials and the fast Fourier transform (FFT) in the 3-D multilevel fast multipole algorithm (MLFMA). The proposed method is exact in interpolation and anterpolation, and has the high numerical efficiency of FFT. A numerical comparison suggests that the pr...

متن کامل

Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom

In traditional quantum optics, where the interaction between atoms and light at optical frequencies is studied, the atoms can be approximated as pointlike when compared to the wavelength of light. So far, this relation has also been true for artificial atoms made out of superconducting circuits or quantum dots, interacting with microwave radiation. However, recent and ongoing experiments using ...

متن کامل

Arithmetic Circuits for Multilevel Qudits Based on Quantum Fourier Transform

We present some basic integer arithmetic quantum circuits, such as adders and multipliers-accumulators of various forms, as well as diagonal operators, which operate on multilevel qudits. The integers to be processed are represented in an alternative basis after they have been Fourier transformed. Several arithmetic circuits operating on Fourier transformed integers have appeared in the literat...

متن کامل

Obtaining the Quantum Fourier Transform from the classical FFT with QR decomposition

We present the detailed process of converting the classical Fourier Transform algorithm into the quantum one by using QR decomposition. This provides an example of a technique for building quantum algorithms using classical ones. The Quantum Fourier Transform is one of the most important quantum subroutines known at present, used in most algorithms that have exponential speed up compared to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002